Вконтакте Facebook Twitter Лента RSS

Азотирование стали: назначение, технология и разновидности процесса. Растворимость водорода, азота и кислорода в стали и их влияние на качество металла Влияние азота на свойства стали

Процессы дисперсионного выделения

Влияние малых количеств азота на свойства стали обусловлено воз­можностью дисперсионного твердения. Выделение азота из железа под­чиняется в основном тем же закономерностям, что и выделение углерода. Различие, наряду с различной скоростью диффузии, вызвано тем, что максимальная растворимость азота в α-железе больше (0,10%), чем углерода (0,018%), а температура максимальной раство­римости азота равна 585 против 725° С для углерода.

Старение

При старении после закалки («Abschreckalterung») действие уг­лерода и азота в чистых железоуг­леродистых и железоазотистых спла­вах одинаково (рис.25). Однако при добавке других легирующих элементов этот процесс несколько видоизменяется. Например, марга­нец не оказывает никакого влияния на старение за счет углерода, тогда как при 0,5% Мn старение, вызывае­мое азотом, устраняется.

В соответствии с этим основа­ние кривой внутреннего трения для сплава с азотом расширяется, мак­симум на кривой сдвигается в сто­рону высоких температур, и даже после трехчасового отпуска при 100° С наблюдается его тельное снижение.

При механическом старении («Reckalterung») чистые железоуглеро­дистые и железоазотистые сплавы обнаруживают различия. При выделении нитридов твердость достигает максимума при 50°С уже через 2 ч, в то время как под влиянием углерода при 50° С за 2 ч твердость еще не повышается, а максимума она достигает только при 200° С. Таким образом, проявляется влияние различной растворимости азота и угле рода при комнатной температуре.

Эти факты наряду с высокой скоростью диффузии азота в стали дают основание приписывать старение сталей главным образом влия­нию азота.

Синеломкость обусловливается главным образом со­держанием азота. Даже в железе с 0,04% С наблюдается незначительное повышение предела прочности при 100-250° С; в железе с 0,02% N этот эффект выражен значительно сильнее. Также отчетливо проявляется влияние азота на ударной вяз­кости, хотя вследствие большой скорости деформации падение вязкости проявляется при более высокой температуре. Повышение предела прочности при температуре синего цвета побежалости начинает­ся уже при очень малой концентрации азота (в растворе), наивысшего значения он достигает при 0,01% N. Дальнейшее повышение содержания азота уже не ведет к повышению прочности. При повышенном же со­держании углерода (>0,2%) можно еще наблюдать повышение проч­ности при содержании азота сверх 0,01%. Однако и в сплавах, не содер­жащих азота, углерод также может вызвать при повышенных тем­пературах хрупкость, аналогичную охрупчиванию при механическом старении


Вследствие совпадения причин, вызывающих механическое старение и синеломкость, можно просто определять склонность к механическому старению посредством измерения твердости в интервале от комнатной температуры до 300° С.

Максимальное по­вышение твердости различно для марок стали, имеющих различную склонность к старению. Связь этого повышения твердости с содержани­ем азота иллюстрируется рис. 26. Этот рисунок подтверждает, что для эффективной борьбы с механическим старением неуспокоенных сталей содержание азота должно быть меньше 0,005% .Обведенные чертой зна­чения для групп Вк

характеризуют добавочное, хотя и крайне незначительное, влияние

Рис. 26. Максимальная разность в твер­дости при высокотемпературном испытании для сталей в зависи­мости от содержания азота

углерода на твердость, так как образцы были с со­держанием углерода <0,01% - поэтому прирост их твердости несколько меньше. Особенно слабый прирост твердости показывают стали Mb и МА, в которых азот связан и взаимодействие его атомов с дислока­циями устранено. Если, однако, эти стали нагреть выше 1000°С, когда нитриды перейдут в раствор, и затем быстро охладить, то повышение твердости будет наблюдаться также при 200-250° С.

Резкое снижение растворимости азота при переходе стали из жидкого состояния в твердое и при полиморфных превращениях приводит к получению перенасыщенного азотом твердого раствора (раствора внедрения), из которого в процессе эксплуатации по границам зерен выделяются нитриды, повышающие твердость, увеличивающие хрупкость, снижающие пластичность и штампуемость («старение» металла). Азот ухудшает свариваемость стали. Высокое содержание азота (0,006-0,008%) недопустимо в стали для металлоконструкций, служащих при отрицательных температурах, в листовом металле для глубокой вытяжки, в котельных сталях и изделиях, работающих в повышенных температурах. В средне- и малоуглеродистых легированных сталях присутствие азота вызывает хрупкий (интеркристаллитный) излом. Интеркристаллитный излом связывают чаще всего с ослаблением границ зерен аустенита вследствие выделения лисперсных включений нитридов Fe4N и особенно AlN.

В жидкую сталь N поступает с шихтовыми материалами. Металлический лом, скрап, чугун содержат обычно 0,002 - 0,008 % N. Дополнительно N переходит в металл из печной атмосферы в области дуг при выплавке стали в дуговой электропечи. В зоне действия дуг молекулярныйNдиссоциирует на атомарный. Это интенсифицирует процесс насыщения стали N.РастворимостьN в стали по закону Сивертса: Выводы: 1.растворимостьN в Feα и Feδ увеличивается с увеличением температуры, а в Feγ снижается; снижение связано с уменьшением стойкости нитрида железа Fe4N;2.растворимость N при переходе из жидкого состояния в твердое и из одной фазы в другую изменяется скачкообразно

Максимальное количество нитридов алюминия выделяется при 800-1000 градусов. С выделением нитридов алюминия при этих температурах связывают пониженную пластичность и прочность корочки стали в зоне вторичного охлаждения при непрерывной разливке. Это приводит к возникновению внутренних трещин в заготовке. Для некоторых деформируемых сталей в присутствии нитридов алюминия наблюдается пониженная технологическая пластичность при температурах прокатки и ковки, что ведет к образованию внутренних и поверхностных разрывов и трещин. В связи с отрицательным влиянием азота для многих марок стали вводятся ограничения по содержанию этого элемента.

Растворимостью газа называется его количество, переходящее в раствор в металле при нормальном парциальном давлении газа. Предельная растворимость равна 0,46%.

По влиянию на растворимость азота в жидкой стали примеси металла можно разбить на две группы:

1) Нитридообразующие (ванадий, ниобий, лантан, церий, титан, алюминий). Эти элементы повышают растворимость азота в железе. Такие примеси, как хром, молибден, марганец, обычно нитридов не образуют, но они характеризуются большим сродством к азоту, чем к железу, поэтому тоже заметно увеличивают растворимость азота в железе.

2) Не образующие нитридов (углерод, никель, медь, фосфор) или образующие с азотом соединения менее прочные, чем с железом (кремний). Эти элементы заметно снижают растворимость азота в железе.

Получению металла с минимальным содержанием азота и водорода способствуют следующие мероприятия:

1) Использование чистых шихтовых материалов

2) Ведение плавки в атмосфере с минимальным содержанием водорода и азота

3) Организация по ходу плавки кипения ванны

4) Обработка металла вакуумом

5) Продувка металла инертными газами

6) Введение в металл нитридообразующих элементов

Имеются сорта стали (так называемые «азотистые») с карбонитридным упрочнением, в которых специально повышают концентрацию азота путем введения азотированных ферросплавов (феррохрома, ферромарганца, феррованадия) или продувки расплавленной стали газообразным азотом на агрегатах ковш-печь – рельсы повышенной износостойкости и контактной выносливости. Соотношение концентраций алюминия и азота (0,012% Al и 0,007% N) в электрохимической анизотропной стали позволяет при определенных температурах и условиях прокатки формировать в металле нитриды алюминия AlN, препятствующие росту зерна (нитридное ингибирование), и получать прокат с желаемой структурой и текстурой. Азот нашел широкое применение в машиностроении для азотирования поверхности деталей, работающих в условиях повышенного износа, а также для повышения их коррозионной стойкости.

В традиционных коррозионно-стойких низкоуглеродистых сталях легирование азотом снижает чувствительность к локальным видам коррозии и межкристаллитной коррозии. Последнее качество связано с ослаблением или полным предотвращением процесса образования пленок карбида Cr23C6 на границах зерен.

Однако, выделяются такие недостатки азотосодержащих сталей , как усложнение технологии получения. Процесс легирования сплавов на основе железа азотом в больших количествах требует использования специальных технологических процессов, что является одним из факторов повышения стоимости производства стали.

В то же время, поскольку азот обладает сильной способностью стабилизировать аустенит, легирование азотом позволяет уменьшить в нержавеющих сталях содержание аустенитообразующих элементов: никеля и марганца в 1,5-2 раза, либо вообще исключить эти элементы из состава стали.

Введение азота в стали позволяет решать не только вопросы повышения их прочности, коррозионной стойкости и экономии легирующих элементов, но и решать экологические проблемы. Так, например, при полном (или частичном) отказе от легирования сталей марганцем и замене его азотом появляется возможность избежать ущерба экосистеме и здоровью людей, связанных с выбросами в атмосферу токсичных окислов марганца при выплавке. Кроме того, азот, входящий в состав воздуха, является дешевым, и процесс его получения из атмосферы не требует разрушения поверхности и недр земли, неизбежных при добыче руд.

Аустенитные коррозионно-стойкие стали с повышенным содержанием азота (около 1%) изготавливаются в настоящее время в промышленных масштабах, но в ограниченных объемах лишь для очень специального применения и при значительных дополнительных затратах на их обработку. Стала очевидной необходимость массового промышленного производства сталей с азотом с получением высококачественной продукции и понижением затрат на их производство, т.к. основным фактором его удорожания является использование выплавки металла под давлением. Однако стали со стабилизированием аустенита не только азотом (до 0,6-0,7%), а также марганцем и никелем, но в меньших количествах, чем углеродистые Cr-Ni- и Cr-Mn-Ni-стали, используются гораздо шире. Это связано с тем, что они выплавляются более дешевым способом – из азотированного сырья.

Аустенитные стали с высоким содержанием азота (больше 0,4%) характеризуются наилучшим сочетанием прочности и вязкости по сравнению со всеми известными в мире материалами.

В настоящее время при разработке новых коррозионно-стойких сталей в качестве легирующего элемента часто используют азот . Это направление материаловедения является перспективным, позволяющим существенно повысить служебные свойства конструкционных материалов и инструмента в различных областях машиностроения и медицинской техники.

Легированные азотом стали обладают целым рядом преимуществ : хорошая технологичность, высокие служебные характеристики, которые достигаются оптимальным сочетанием параметров прочности, пластичности, коррозионной стойкости в большинстве рабочих сред. Именно поэтому эти стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения. Наиболее распространенными легирующими элементами являются хром, никель и марганец.

Первоначальный стимул к разработке азотсодержащих сталей имел экономическую основу, связанную с заменой азотом дорогостоящего никеля. Однако по мере развития этого направления выявились принципиальные преимущества азотсодержащих сталей, прежде всего для обеспечения такого комплекса механических свойств, который невозможно получить за счет традиционных схем легирования.
Целесообразность легирования нержавеющих сталей азотом обусловлена следующими факторами: повышенной растворимостью азота в стали в присутствии хрома, позволяющей получать сталь обычными методами выплавки с использованием азотосодержащих ферросплавов; повышенным уровнем прочностных характеристик за счёт твёрдорастворного и дисперсионного упрочнения; частичной заменой азотом ряда дорогих легирующих элементов.

Традиционный способ выплавки стали позволяет получить в них не более 0,6-0,7% азота, то есть соответствующего равновесному содержанию азота при температурах аустенитизации. При использовании метода литья с противодавлением возможно получение сталей с содержанием азота до 1,2-2,0% (в слитках до 200 кг). Кроме того, в настоящее время предлагаются другие различные способы получения сталей с высоким содержанием азота. Целью методов объемного азотирования является повышение прочностных характеристик за счёт замены карбидов высокодисперсными нитридами.

Основным преимуществом сталей аустенитного класса являются их высокие служебные характеристики (прочность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность. Поэтому аустенитные коррозионно-стойкие стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения. Наиболее распространенными легирующими элементами являются хром, никель и марганец.

Аустенитные нержавеющие стали применяют очень широко не только из-за высоких антикоррозионных свойств, но и благодаря высоким технологическим и механическим свойствам. Эти стали хорошо прокатываются в горячем и холодном состояниях, в холодном состоянии выдерживают глубокую вытяжку и профилирование, допускают применение электросварки, без охрупчивания околошовных зон.
Применение аустенитных сталей в качестве конструкционных материалов в ряде случаев сдерживается их недостаточной прочностью и износостойкостью. Однако в последние двадцать лет были разработаны и изучены различные методы упрочнения аустенитных сталей, что привело к созданию новых достаточно высокопрочных материалов.

В последние годы в мировой практике возрастает использование азотосодержащих сталей. Производятся они в промышленном масштабе как обычными стандартными методами (с применением азотированных ферросплавов), обеспечивающими содержание азота в соответствии с максимальной растворимостью в жидкой стали при атмосферном давлении, так и специальными способами, когда получаются сплавы со сверхравновесным содержанием азота.

В аустенитных нержавеющих сталях азотом можно замещать никель, что в конечном счет при изготовлении из таких сталей различной продукции обеспечивает:

  • вклад в сохранение окружающей среды благодаря сбережению природных ресурсов;
  • экономию за счет низкой стоимости азота;
  • значительное повышение прочности (до 3600 МПа);
  • значительно более высокую пластичность по сравнению с другими сталями такой же прочности;
  • повышенную коррозионную стойкость, поскольку с точки зрения локальной коррозионной стойкости 1 %(масс.) азота эквивалентен 20% (масс.) хрома;
  • повышенное сопротивление коррозионному растрескиванию.

Совокупность всех перечисленных факторов делает аустенитные нержавеющие стали с высоким содержанием азота предпочтительными перед другими материалами для применения перспективных сберегающих технологий, а также для изготовления продукции с повышенным сроком службы при меньших затратах. К недостаткам таких сталей можно отнести ограниченную свариваемость, а также тот факт, что процесс их производства требует специальных знаний.

Аустенитные коррозионно-стойкие стали с высоким содержанием азота изготавливаются в настоящее время в промышленных масштабах, но в ограниченных объемах лишь для очень специального применения и при значительных дополнительных затратах на их обработку. Способы производства таких сталей весьма дороги, так как часто приходится использовать процессы выплавки металлов под давлением такие, например, как электрошлаковый переплав под давлением. Но поскольку в результате получают продукцию очень высокого качества, такой способ будет использоваться и в дальнейшем, и объемы его производства возрастут.

Перечисленные выше свойства, а также другие преимущества нержавеющих сталей с высоким содержанием азота, открывают перспективы их применения в транспорте (автомобили, железные дороги, суда), строительстве (фиксирующие приспособления, арматура для сохранения целостности таких корродирующих конструкций, как мосты и тоннели), авиакосмической промышленности, при производстве спортивных товаров, техники для исследования океанов, а также для производства объектов атомной энергетики и нужд военно-промышленного комплекса.
Благодаря высоким прочности, пластичности и коррозионной стойкости аустенитные стали с повышенной концентрацией азота открывают для конструкторов более широкие возможности при меньшем расходе материала, а изготовленные из них изделия будут служить значительно дольше. Высокая удельная прочность и долговечность конструкций это основные критерии для сталей, отвечающих требованиям сберегающих технологий.

Основное преимущество азота перед другими элементами, которыми легируют железные сплавы, заключается в его наличии в природе практически в неограниченном количестве (прежде всего, в воздухе). Получение азота из воздуха не требует разрушения поверхности и недр Земли, неизбежного при добыче руд и наносящего значительный вред природе. Более того, применение азота, способного успешно заменять никель и марганец в сталях, позволит уменьшить в 1,5-2 раза расход этих важнейших для легирования сталей элементов. В связи с этим при полноценном использовании азота добыча руд этих металлов может быть существенно сокращена. Экологические последствия такого сокращения трудно переоценить.

Не менее важным является использование азота для легирования сталей , у которых специальные свойства будут сочетаться с высокой прочностью, можно при одной и той же потребности сократить объем производства на 30-40%. К числу таких сталей следует отнести коррозионно-стойкие, теплостойкие, износостойкие и некоторые другие. Сокращение объёма производства становится возможным также благодаря более высоким эксплуатационным характеристикам сталей, легированных азотом, чем у традиционных сталей рассматриваемого типа. Сокращение объема производства означает уменьшение затрат энергии, а также отрицательного влияния на природные условия факторов, неизбежно сопровождающих работу металлургических заводов.

До настоящего времени азот не применялся для легирования сплавов на основе железа столь же широко, как углерод, так как технологические процессы насыщения этих сплавов азотом сложнее, чем углеродом, особенно если использовать для производства сплавов традиционную технологию выплавки в открытых индукционных или дуговых печах.

Однако уже можно считать, что главные трудности введения азота в заданном количестве в железные сплавы преодолены, и ряд технологических процессов азотирования железных сплавов используются в промышленных масштабах. Методы введения азота в стали можно разделить на две следующие группы.

  • Насыщение азотом расплавов:

а) плавка при атмосферном давлении азота над расплавом (т.е. на воздухе) с использованием в качестве шихтовых материалов азотированных ферросплавов (феррохрома, ферромарганца, феррованадия и других); Аустенитные Cr-Mn-стали с 0,6% N, которые выплавляются при атмосферном давлении, используются во всем мире как материал для бандажных колец;
б) плавка при повышенном давлении азота над расплавом; Более высокие содержания азота, около 1%, могут быть достигнуты только при повышенном давлении. В установках электрошлаковой переплавки под давлением может быть создано давление макс. 42 бар. Через шлюзы в установку могут непрерывно подаваться легирующие элементы. За счёт межатомного расположения азота в кристаллической решётке стали значительно повышаются прочность и коррозионная стойкость без снижения пластичности. Давление установки повышает, с одной стороны, растворимость отдельных легирующих элементов в плавке и предупреждает, с другой стороны, удаление газом летучих легирующих элементов во время кристаллизации. Такой комбинации свойств не достигается никакой другой группой материалов;

  • 2. Твердофазное насыщение азотом:

а) объёмное или поверхностное азотирование компактного материала или порошков в атмосфере азотсодержащих газов;
б) горячее прессование под давлением азота в газостатах порошков элементов, входящих в состав сплава, или просто порошка сплава заданного состава.

Азотсодержащие стали принято подразделять на два вида: с равновесным и «сверхравновесным» содержанием азота. Стали первого вида получают в условиях затвердевания расплава на воздухе при атмосферном давлении азота, второго вида – путем выплавки и кристаллизации слитков или отливок при повышенном или высоком давлении азота. В таких условиях содержание азота в металле может быть значительно выше достигаемого в результате кристаллизации в условиях атмосферного давления. «Сверхравновесные» концентрации азота, конечно, могут быть получены и при использовании методов твердофазного насыщения азотом.

Широкая замена углерода азотом открывает для сталей, выплавленных в установках электрошлаковой переплавки под давлением большое количество областей применения. Энергетическая промышленность и изготовители подшипников качения используют уже с большим успехом азотированные под давлением стали. Дальнейшие области применения это авиационная промышленность (авиационные двигатели), химическая и нефтехимическая промышленности, а также строительная промышленность. Новейшей разработкой являются высокоазотированные безникелевые стали, которые пригодны для биосовместимого применения.

В работе исследованы коррозионно-стойкие азотистые стали типа 3Х15АМ (1), 06Х18АГ19М2 (2) и 07Х16АГ13М3 (3). Основой исследуемых сталей является композиция Fe-Cr-Mn-C/N.

Исследованные стали были выплавлены по технологии электрошлакового переплава в среде газообразного азота или смеси азота с аргоном под давлением газа составляющим от 1 до 40 атмосфер в зависимости от требуемого содержания N в стали, используя в качестве шлака нитрид кремния (Si4N3). Процесс состоит из двух стадий: выплавки электродов из стали необходимого состава в электродуговой печи и переплава под высоким давлением, в процессе которого происходит насыщение стали азотом.

Используемые в работе стали подвергались четырем видам термической обработки горячей ковке с последующей закалкой от 1050˚С (1 час) в воде и старению при 300˚С и 500˚С по 2 часа. После закалки, структура исследованных сталей представляла собой γ + α′ (30Х15АМ–сталь 1), γ (06Х18АГ19М2–сталь 2) и α′ (07Х16АГ13М3–сталь 3).

По результатам исследований можно сделать следующие выводы:

  1. Стали 2 и 3, легированные только азотом, показали более высокую прочность и пластичность по сравнению с комплексно легированной углеродом и азотом сталью 1. Оптимальное сочетание свойств после всех исследованных режимов термической обработки показала высокоазотистая сталь 2 с высоким содержанием хрома и марганца.
  2. По результатам фракторафических исследований сталь 1, легированная углеродом и азотом (0,3% С и 0,35% N), оказалась наименее вязкой после проведенной термической обработки, что обусловлено в основном присутствием карбидов Cr23С6. Наиболее вязкой показала себя сталь 2, разрушавшаяся вязко при всех исследованных режимах термообработки. Сталь 3 по вязкости разрушения занимает промежуточное положение.
  3. По результатам электрохимических исследований установлено, что питтингоустойчивость сталей в основном зависит от их химического состава, на нее не оказывает влияние режим термической обработки. В то время как кривые анодной поляризации отражают изменение прошедшее в структуре по действием термической обработки.
  4. По результатам проведённых исследований сталь 2 обладает комплексом наиболее высоких механических и коррозионных свойств. Однако оптимизация режимов термической обработки сталей 1 и 3 также может обеспечить им высокие свойства.
  • Студент: Меркушин Е.А.
  • Руководитель: Дорошенко В.А.

Существует тенденция возрастания доли легированных сталей в общем объёме металлургического производства. Основные преимущества легированных сталей по сравнению с традиционными сталями-аналогами − их более высокая прочность

  • легированные стали;
  • коррозионно-стойкие стали;
  • азот;
  • сталь;
  • аустенитные нержавеющие стали.
  1. Азот как легирующий элемент в сталях на основе железа /Банных О.А., Блинов В.М., Костина М.В. //Сборник научных трудов. Выпуск 3, с.157-192
  2. Исследование фазовых превращений в азотосодержащих сталях методом высокотемператуной рентгенографии / Банных О.А., Бецофен В.М., Блинов В.М., Ильин А.А., Костина М.В., Блинов Е.В., Костыкова О.С. // Металлы, 2005, №5, С. 15-22
  3. Богачев И.Н., Еголаев В.Ф. Структура и свойства железомарганцевых сплавов. М.: Металлургия, 1973, 295 с.
  4. Новые конструкционные стали со сверхравновесным содержанием азота /Лякишев Н.П., Банных О.А. //Перспективные материалы, 1995, №1, С.73-82
  5. Влияние химического состава и термической обработки на износостойкость сталей системы железо-хром-азот /Банных О.А., Блинов Н.М., Костина М.В. и др. //Металлы, 2000, №2, С. 57-64
  6. Свойства структур, формирующихся после закалки Fe-18Cr-(0,9-1,3)% N – сплавов с добавками и без добавок никеля /Ю.И.Устиновщиков, А.В.Рац, О.А.Банных, В.М.Блинов //Известия ВУЗов. Черная металлургия, 1997, №7, С. 48-51
  7. Гудремон Э. Специальные стали, том I. М.: Металлургия, 1966, 736 с.
  8. Влияние азота на коррозионные и коррозионно-механические свойства стали со структурой азотистого мартенсита //В.М.Блинов, Г.Ю.Калинин, М.В.Костина, С.Ю.Мушникова, В.И.Попов, А.А.Харьков //Металлы, 2003, № 4, С. 84-92
  9. Механические свойства азотсодержащих нержавеющих сталей после термической и термомеханической обработки /Л.М. Капуткина, Д.Ю. Улунцев, Д.Г. Прокошкина //Известия ВУЗов. Черная металлургия, 1995, №7, С. 45-46
  10. О природе упрочнения высокоазотистых сталей на основе железохромомарганцевого аустенита /Зуев Л.Б., Дубовик Н.А., Пак В.Е. //Черная металлургия, 1997, №10, С.61
  11. ASM Specialty Handbook Stainless Steels/Ed. J. Davis. The materials information society. – USA, 1994. – P. 201
  12. Катада Э., Ванишцу Н., Бабак Х. Стали с повышенным содержанием азота, разработанные в национальном институте материаловедения //Металловедение и термическая обработка металлов. – 2005. №11 (605)
  13. Коджаспиров Г.Е., Сулягин Р.В., Карьялайнен Л.П. Влияние температурно-деформационных условий на упрочнение и разупрочнение азотосодержащих коррозионно-стойких сталей//Металловедение и термическая обработка металлов. 2005. №11 (605)
  14. Новые азотосодержащие аустенитные нержавеющие стали с высокими прочностью и пластичностью /Шпайдель М.О. //МиТОМ, 2005, №11, с.9-14.
  15. Rawers J. Preliminary Study into the Stability of Interstitial Nitrogen and Carbon in Steels // High Nitrogen Steels. HNS Conference Proceedings. Zurich: VDF Hochschulverlag ETH Zürich, 2003, 273-280 16. Влияние азота на коррозионные и коррозионно-механические свойства стали со структурой азотистого мартенсита //В.М.Блинов, Г.Ю.Калинин, М.В.Костина, С.Ю.Мушникова, В.И.Попов, А.А.Харьков //Металлы, 2003, № 4, С. 84-92

1.2 Влияние азота на свойства стали

При отсутствии в стали элементов, образующих нитриды при высокой температуре (Ti, Al, Zr, V), после образования α-Fe начинается выделение азота из раствора в виде включений нитридов железа (Fe2N, Fe4N, Fe8N). Это выделение может продолжаться длительное время после охлаждения и, так как оно происходит в основном при низкой температуре, выделившиеся включения дисперсны (размером порядка 10-3 мкм). Дисперсные включения нитридов железа располагаются по кристаллографическим плоскостям и, препятствуя перемещению дислокаций, вызывают охрупчивание металла. Результатом этого является снижение ударной вязкости и относительного сужения, при одновременном повышении твердости и прочности.

Как и выделение нитридов железа, снижение ударной вязкости усиливается при длительном хранении или эксплуатации стальных изделий, достигая минимума через 20-40 суток, поэтому описываемое явление получило название старения. Старение может быть ускорено искусственно, если закаленное железо или сталь подвергнуть холодной пластической деформации, увеличивающей скорость распада твердого раствора и выделения нитридов железа. В результате старения ударная вязкость может уменьшиться в четыре-шесть раз, поэтому склонность к старению является пороком стали. Она характерна для малоуглеродистой стали, не раскисленной алюминием или ванадием .

Влияние азота на механические свойства стали показано на рисунке 3.

Рисунок 3 – Влияние азота на механические свойства стали

Присадка в сталь элементов, связывающих азот в нитриды при высоких температурах, устраняет склонность стали к старению. Такими элементами являются следующие:

1) алюминий, образующий нитриды в основном во время затвердевания и в твердом металле до температуры превращения γ-Fe в α-Fe;

2) ванадий и цирконий, образующие нитриды во время кристаллизации;

3) титан, образующий нитриды в жидкой стали и во время кристаллизации.

Наибольшее применение получил алюминий, широко применяемый и в качестве раскислителя. При обычных концентрациях азота и алюминия в твердом металле образуются нитриды. Но включения этих нитридов, выделяясь при более высокой температуре, имеют на два-три порядка большие размеры, чем включения нитридов железа, поэтому они не оказывают такого влияния на движение дислокаций и не вызывают старение.

Следовательно, спокойная сталь, раскисленная алюминием, не склонна к старению. Однако и в стали, раскисленной алюминием, может наблюдаться понижение ударной вязкости. Это проявляется при высоком содержании азота и алюминия (например, 0,01% N и 0,2% А1), когда в металле образуется межзеренный излом, проходящий по границам зерен первичного аустенита. Образование такого излома вызвано ослаблением связи между зернами вследствие выделения по их границам включений нитрида алюминия, и оно свидетельствует об ухудшении свойств металла.

Подводя итог всему вышесказанному избыточное содержание азота в стали приводит к понижению предела текучести и временного сопротивления, к тому же он является основной причиной старения малоуглеродистых сталей. В стали, производимой в электропечах, содержится 0,008-0,012% азота. Поскольку азот является трудноудалимой примесью, его отрицательное влияние можно нейтрализовать путём введения нитридообразующего элемента для получения высокопрочных нитридов. При этом достигается в первую очередь повышение вязких свойств сталей. Но для сведения вредного влияния азота к минимуму желательно получать сталь с содержанием этого элемента меньше 0,004% .

1.3 Источники газов

К основным источникам газов относятся:

1) шихтовые материалы;

2) атмосфера плавильного агрегата, а также подаваемое на поверхность или в глубь ванны дутье (технический кислород или воздух);

3) ферросплавы и различные добавки, вводимые в металл или шлак по ходу плавки и разливки;

4) атмосфера, окружающая жидкий металл при выпуске и разливке.

Большое количество газов вносит в металл шихта и, несмотря на то, что эти газы в значительной мере удаляются из металла по ходу плавки, на насыщенность шихтовых материалов газами обращают особое внимание. Лом содержит обычно 0,003-0,005% N. Чугун содержит обычно 0,0055 N .

1.4 Изменение содержания азота по ходу плавки

Поведение азота при выплавке стали с использованием металлического лома в шихте изучали многие исследователи, которыми установлено, что после проплавления шихты и проведения окислительного периода концентрация азота зависит от химического состава стали, конкретных условий ведения плавки и от количества окисленного углерода.

Сталь, изготовленная в открытых электрических дуговых печах, содержит несколько больше азота, чем мартеновская сталь того же состава. Обычно это объясняют более высокой температурой и диссоциацией азота в зоне дуг.

За время плавления в электрических дуговых печах протекают оба процесса: азот поглощается из атмосферы печи плавящимся в зоне дут металлом (преимущественно в начале периода плавления до появления жидкого шлака) и выделяется совместно с окисью углерода, образующейся в результате окислительного воздействия железистого шлака на жидкий металл.

Сам факт поглощения азота из атмосферы печи подтверждается благотворным влиянием раннего шлакообразования и уменьшения засоса воздуха в ее рабочее пространство, способствующих снижению содержания азота к концу плавления. Общее количество азота, поглощенного за время плавления, видимо, невелико, так как в противном случае трудно было бы объяснить существование отчетливой зависимости между содержанием азота в шихте и его концентрацией в готовой углеродистой стали или в металле к концу окислительного периода плавки

Окисление металла во время плавления и связанное с ним выгорание некоторого количества углерода способствуют понижению концентрации азота к концу плавления. Поэтому в плавках с затянувшимся плавлением азота и углерода в металле бывает обычно меньше. Замена извести известняком снижает содержание [N] к концу плавления примерно на 0,002%.

Для выражения зависимости между изменением за время кипения (Δ) и количеством выгоревшего углерода (Δ[С]) были предложены различные уравнения. Однако в действительности:

lg[N]/[N]0 = -k([C]0-[C]), (2)

т. е. логарифм относительного изменения концентрации [N] пропорционален количеству выгоревшего углерода.

Даже в благоприятных условиях количество азота, выделяющегося из металла в окислительный период плавки, обычно не превышает 30-50% от его исходного содержания. Если в металле по расплавлении было 0,006-0,011% N, то к концу окислительного периода плавки содержание его обычно находится в пределах 0,004-0,008%. В таких пределах изменение содержания азота в металле за время кипения Δ примерно пропорционально lg[N]/[N]0, а следовательно, по уравнению и ([С]0-[С]). Чтобы более полно выделить азот, необходимо значительное увеличение Δ[С,%]. Для получения стали с низким содержанием азота рекомендуется окислять 0,35-0,45% С ( около 0,35% С в час). Эти рекомендации подтверждаются практикой работы наших заводов и последними выводами Чуйко (0,3-0,5% С для основных и 0,2- 0,3% для кислых дуговых печей) .

Изменение содержания азота в окислительный период плавки, проводимый с использованием газообразного кислорода, зависит от чистоты кислорода и способа его подачи в ванну. При подаче кислорода через стационарную фурму ее сопло располагается на 300-500 мм от поверхности металла. В этом случае струя кислорода разбавляется инжектируемым воздухом и содержание азота в металле уменьшается медленнее, чем при подаче кислорода в ванну через трубки, а в отдельных случаях даже увеличивается. Подобное явление было установлено на одном из наших заводов, при изготовлении трансформаторной стали в 100-т дуговых печах. Среднее содержание азота за время продувки металла кислородом в проконтролированных плавках повышалось с 0,0053% до 0,0076% и вновь понижалось до 0,0070% после добавки чугуна (1% от веса садки), вызывавшего вскипание ванны.

Во все периоды плавки металл в большей или меньшей мере соприкасается с печными газами. Площадь поверхности соприкосновения металла с газами зависит от типа процесса и периода операции; при выпуске металла из печи и при его разливке площадь поверхности соприкосновения металла с газом больше, чем в те периоды плавки, когда металл покрыт шлаком. При плавке стали в электропечи азот переходит в металл из печной атмосферы во время плавления. Этому способствует восстановительная атмосфера в области дуг и в общем незначительное окисление металла, а также диссоциация азота в дугах. После образования окислительного шлака, растворяющего очень мало азота (0,002-0,008%) , поступление азота в металл из печной атмосферы практически прекращается, поэтому ранее шлакообразование позволяет меньшее содержание азота в металле к началу окислительного периода. Во время окислительного периода происходит удаление части азота из металла вследствие экстрагирования его пузырями СО. Количество удаляемого азота увеличивается с ростом количества окислительного углерода. Содержание какого-либо газа в металле зависит от парциального давления этого газа в окружающей металл атмосфере. Практика показывает, например, что содержание азота в стали, полученной при продувке чугуна воздухом выше, чем при продувке чистым кислородом. Принимая во внимание это обстоятельство, наиболее чистую по содержанию газов сталь можно получать при плавке и разливке в вакууме. В этом случае металл не только не насыщается газами из атмосферы, а наоборот, содержащиеся в металле газы экстрагируются из него. В обычных условиях роль, аналогичную воздействию вакуума, играют пузыри СО, образующие при окислении углерода. Водород и азот, растворенные в металле стремятся выделиться в пузырь монооксида углерода, поскольку их парциальные давления в нем равны нулю. В тех случаях, когда металл кипит, изменения содержания газов в нем зависит от двух действующих в противоположном направлении факторов: насыщения металла газами в результате влияния атмосферы агрегата и выделение газов из металла вместе с пузырями монооксида углерода. В момент, когда кипение по каким-то причинам прекращается, прекратиться и очищающее действие СО.

Такое же очищающее воздействие оказывает продувка металла инертным газом (например, аргоном) или разливка стали в атмосфере инертного газа. Продувка стали аргоном - один из самых распространённых способов внепечного рафинирования. Одной из задач продувки является снижение содержания газов в металле – кислорода, азота и водорода .

При дегазации раскисленной стали удаление азота при всех способах нестабильно и незначительно, при продувке стали на воздухе или в вакууме содержание азота изменяется на 8 – 13%. Дегазация нераскисленных сталей практически не сопровождается удалением азота до момента ввода раскислителей, после чего начинается период деазотации, что объясняется образованием нитридов титана и алюминия и их удалением пузырьками аргона. Однако удаление азота в процессе продувки расплава аргоном неэффективно даже при использовании большого (более 2 м3/т) расхода аргона. В ряде случаев, когда металл не содержит нитридообразующих примесей и температура металла невелика, аргон для продувки заменяют более дешевым азотом. Содержание азота при этом почти не изменяется, а содержание водорода уменьшается. Кроме указанных факторов, на содержание газов в металле влияет также вводимые по ходу плавки добавки (известь, руда, ферросплавы и т.д.) .

При еще большем содержании, которое может быть достигнуто присадкой богатого азотом феррохрома, сталь при затвердевании обнаруживает склонность к выделению газообразного азота. Поэтому в отливках, полностью свободных от пузырей, содержание азота можно довести только до 0,1 - 0,15%. Эта присадка азота к полуферритной хромистой стали вызывает снижение, а при некоторых обстоятельствах и полное исчезновение фepритной структурной составляющей. Даже в ферритных сталях, содержащих около 30% Сr, можно вызвать при нагреве до соответствующей температуры частичное превращение α→γ. Следствием такого образования аустенита является снижение склонности к росту зерна при высоких температурах, что особенно существенно при сварке. Таким путем и фасонное литье из ферритной хромистой стали может быть получено с мелкозернистой структурой.

В закаливающихся и улучшаемых хромистых сталях с 15 - 18% Сr, например в стойкой против действия морской воды стали с 18% Сr и 0,5 - 2% Ni, можно добавкой 0,2% N 2 заменить 2% Ni, добавляемого для сквозного улучшения.

Влияние азота как легирующего элемента хромистых сталей состоит, кроме воздействия на твердый раствор, также в извлечении хрома из основной массы вследствие образования нитридов хрома.

Азот расширяет γ-область и уменьшает критическую скорость охлаждения, поэтому его можно вводить в аустенитную сталь в качестве заменителя других ayстенито-образователей, например никеля. Так присадка азота к стали с 18% Сr и 8% Ni позволяет снизить содержание Ni примерно до 4%, если одновременно повысить содержание азота до 0,2 - 0,3%. Структура таких сплавов, как показано на рисунок 12, состоит почти полностью из аустенита. То же самое справедливо по отношению к введению азота в хромомарганцовистую или марганцовистую сталь и в соответствующие сплавы с хромом, марганцем и никелем.

Замечательной особенностью всех аустенитных сплавов с повышенным содержанием азота является повышение предела текучести, как это видно из таблицы 2. Увеличение предела текучести и предела прочности проявляется не только при комнатной температуре, но также и при повышенных температурах. Выделение нитридов в жаропрочных сталях и сплавах на основе никель - хром, кобальт - хром - никель и др. оказывается особенно ценным для области температур 700 - 800°C, так как при этом жаропрочность сплава повышается без существенного охрупчивания.

При применении сплавов с повышенным содержанием хрома для работы при высоких температурах в богатых азотом атмосферах или в чистом азоте высокого давления происходит поглощение азота поверхностным слоем. Такое поглощение азота при длительных выдержках может привести к настолько высокому содержанию его в поверхностном слое, что сталь станет хрупкой в результате образования волосных трещин (например, сталь с 18% Сr, 10% Ni и 2% Мо).

Большое химическое сродство азота к различным элементам, например алюминию, титану, цирконию и также ванадию, позволяет использовать частицы нитридов для измельчения структуры.

Азот улучшает сопротивляемость межкристаллитной коррозии коррозионно-стойких хромоникелевой и, особенно, хромомарганцовистой и ферритной хромистой сталей.

Таблица 2 . Состав и механические свойства аустенитных хромоникелевых и хромомарганцовистых сталей с присадкой азота.

Подводя итог данным о применении азота в качестве легирующего элемента, в особенности в нержавеющих и жаростойких (окалиностойких) сталях, можно сказать следующее: в закаливающейся и улучшаемой хромистой стали примерно с 15 - 18% Сr азот повышает способность к улучшению и может в этом отношении заменить обычные присадки никеля в количестве 0,5 - 2%. В полуферритной и ферритной стали, содержащей свыше 18% Сr, азот приводит к образованию аустенита и к увеличению количества способной к превращению структурной составляющей, в связи с чем уменьшается склонность стали к грубозернистости. В аустенитных хромоникелевых и хромомарганцовистых сплавах азот повышает стабильность аустенита и частично может заменить никель; одновременно увеличиваются предел текучести и предел прочности, а также и механические свойства при нагревании. Азот совместно с другими легирующими элементами может измельчать зерно в литейных сплавах. Особенно заметным становится измельчение зерна под влиянием азота в сталях, чувствительных к перегреву.

© 2024 Бизнес. Регистрация. Документы. Заявления